Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
China Journal of Chinese Materia Medica ; (24): 587-592, 2022.
Article in Chinese | WPRIM | ID: wpr-927940

ABSTRACT

A content determination method based on ~1H-qNMR was developed for the determination of total ginsenosides in Shenmai Injection. The parameters were optimized with CD_3OD as the solvent, dimethyl terephthalate as the internal standard, the peak at δ 8.11 as the internal standard peak, and the peaks at δ 1.68 and δ 0.79 as quantitative peaks of total ginsenosides. The developed ~1H-qNMR-based method was validated methodologically. The results showed that the method could achieve accurate measurement of total ginsenosides in Shenmai Injection in the range of 0.167 6-3.091 1 mmol·L~(-1). The developed ~1H-qNMR-based method for total ginsenosides is simple in operation, short in analysis time, strong in specificity, independent of accompanying standard curve, and small in sample volume, which can serve as a reliable mean for the quality control of Shenmai Injection. This study is expected to provide new ideas for the development of quantification methods of total ginsenosides.


Subject(s)
Drug Combinations , Drugs, Chinese Herbal , Ginsenosides/analysis , Quality Control
2.
China Journal of Chinese Materia Medica ; (24): 581-586, 2022.
Article in Chinese | WPRIM | ID: wpr-927939

ABSTRACT

Shenmai Injection is a Chinese medicinal injection prepared from Ginseng Radix et Rhizoma Rubra and Ophiopogonis Radix, which is widely used in clinical practice for the treatment and adjuvant therapy of cardiovascular diseases with significant pharmacological effects. Proton nuclear magnetic resonance spectroscopy(~1H-NMR) has the advantages of simple and nondestructive sample pretreatment, fast analysis, abundant chemical information, quantification and no need to follow the standard curve. It is widely used in the analysis and research of complex mixtures of traditional Chinese medicine, clinical blood and urine samples. In this study, the ~1H-NMR fingerprint of Shenmai Injection was established. Thirty-two chemical components were identified, including seven amino acids, eight small molecular organic acids, one alkaloid, four sugars, two nucleosides, seven saponins, and three other components. Pearson's correlation coefficient and multivariate analysis of variance(principal component analysis combined with hierarchical cluster analysis) were applied based on the ~1H-NMR fingerprint to evaluate the quality consistency. The results showed high-quality consistency of 82 batches of Shenmai Injection. This study confirms that the ~1H-NMR fingerprint has great potential in the application of quality control of Chinese medicinal injection.


Subject(s)
Chromatography, High Pressure Liquid , Drug Combinations , Drugs, Chinese Herbal/chemistry , Proton Magnetic Resonance Spectroscopy , Rhizome/chemistry
3.
China Journal of Chinese Materia Medica ; (24): 575-580, 2022.
Article in Chinese | WPRIM | ID: wpr-927938

ABSTRACT

The present study established a quality evaluation method for ginsenoside reference substances based on quantitative nuclear magnetic resonance(qNMR) spectroscopy. ~1H-NMR spectra were collected on Bruker Avance Ⅲ 500 MHz NMR spectrometer equipped with a 5 mm BBO probe. The acquire parameters were set up as follows: pulse sequence of 30°, D_1=20 s, probe temperature= 303 K, and the scan number = 32. Dimethyl terephthalate, a high-quality ~1H-qNMR standard, was used as the internal standard and measured by the absolute quantitative method. Methyl peaks of comparatively good sensitivity were selected for quantification, and linear fitting deconvolution was adopted to improve the accuracy of integration results. The qNMR spectroscopy-based method was established and validated, which was then used for the quality evaluation of ginsenoside Rg_1, ginsenoside Re, ginsenoside Rb_1, ginsenoside Rd, and notoginsenoside R_1. The results suggested that the content of these ginsenoside reference standards obtained from the qNMR spectroscopy-based method was lower than that detected by the normalization method in HPLC provided by the manufacturers. In conclusion, the qNMR spectroscopy-based method can ensure the quality of ginsenoside reference substances and provide powerful support for the accurate quality evaluation of Chinese medicine and its preparations. The qNMR spectroscopy-based method is simple, rapid, and accurate, which can be developed for the quantitative assay of Chinese medicine standard references.


Subject(s)
Chromatography, High Pressure Liquid/methods , Ginsenosides/analysis , Magnetic Resonance Spectroscopy/methods , Proton Magnetic Resonance Spectroscopy , Reference Standards
4.
China Journal of Chinese Materia Medica ; (24): 569-574, 2022.
Article in Chinese | WPRIM | ID: wpr-927937

ABSTRACT

Chinese medicinal injection, made of active components extracted from Chinese medicine or Chinese medicinal compound, is a novel dosage form of Chinese patent medicine in China and is pivotal in the traditional Chinese medicine(TCM) industry. The quality control standard of Chinese medicinal injection determines its safety and efficacy. The quantitative nuclear magnetic resonance(qNMR) spectroscopy is a non-targeted, non-invasive, and non-destructive technique with high reproducibility, short measurement time, convenient sample preparation, a broad range of linearity, and no requirement on the reference substance of tested components, which is advantageous as compared with traditional chromatographic methods, and it can provide information about the molecular composition of the tested samples. Therefore, in light of multiple challenges in the quality control of Chinese medicinal injection, such as complex composition, difficulties in quantitative analysis, and the shortage of reference substances, the application of qNMR spectroscopy combined with chemometrics techniques was proposed for the quality evaluation of Chinese medicine reference substances, Chinese medicinal injection, and intermediates in the production process, as well as for the stability analysis of Chinese medicinal injection. This study is expected to provide references for the application of qNMR spectroscopy in the quality control of Chinese medicinal injection.


Subject(s)
Magnetic Resonance Spectroscopy , Medicine, Chinese Traditional , Quality Control , Reproducibility of Results
5.
China Journal of Chinese Materia Medica ; (24): 2115-2121, 2020.
Article in Chinese | WPRIM | ID: wpr-827973

ABSTRACT

A rapid analysis method based on ultraviolet-visual(UV-Vis) spectroscopy, near infrared(NIR) spectroscopy and multivariable data analysis was established for quality evaluation of Shengxuebao Mixture. The contents of eight active ingredients of Shengxuebao Mixture including albiflorin, paeoniflorin, 2, 3, 5, 4'-tetra-hydroxy-stilbene-2-O-β-D-glucopyranoside, specnuezhenide,ecliptasaponin D, emodin, calycosin-7-glucoside and astragaloside Ⅳ were simultaneously detected by using this method. HPLC-UV-MS was used as a reference method for determining the contents of these ingredients. Partial least squares(PLS) analysis was implemented as a linear method for multivariate models calibrated between UV spectrum/NIR spectrum and contents of 8 ingredients. Finally, the performance of the model was evaluated by 24 batches of test samples. The results showed that both UV-Vis and NIR models gave a good calibration ability with an R~2 value above 0.9, and the prediction ability was also satisfactory, with an R~2 value higher than 0.83 for UV-Vis model and higher than 0.79 for NIR model. The overall results demonstrate that the established method is accurate, robust and fast, therefore, it can be used for rapid quality evaluation of Shengxuebao Mixture.


Subject(s)
Calibration , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Least-Squares Analysis , Mass Spectrometry , Spectroscopy, Near-Infrared
6.
China Journal of Chinese Materia Medica ; (24): 4248-4254, 2018.
Article in Chinese | WPRIM | ID: wpr-775351

ABSTRACT

In this study, the HPLC-UV-MS method for the simultaneous determination of eight active ingredients of Shengxuebao Mixture were developed based on the concept of quality by design(QbD)with a stepwise optimization approach. After the analytical target profile(ATP)had been defined, albiflorin, paeoniflorin, 2, 3, 5, 4'-tetra-hydroxy-stilbene-2-O-β-D-glucopyranoside, specnuezhenide, ecliptasaponin D, emodin, calycosin-7-glucoside, and astragaloside Ⅳ were identified as the indicator components. The resolution and the signal-to-noise ratio of indicator components were then selected as critical method attributes (CMA) for the first step optimization. According to the results collected from fractional factorial design, critical method parameters (CMP) were determined with a multiple linear regression method, which included the amount of acid addition in the mobile phase, temperature, gradient, and wavelength. After that, the amount of acid addition and the wavelength were optimized to improve the resolution and the signal-to-noise ratio of the indicator components. The peak symmetry factors of specnuezhenide and emodin were then set as CMA for the second step optimization. The Box-Behnken designed experiments were conducted. The temperature and gradient were optimized after modelling. The design space were calculated and verified. The optimized analytical method was validated, and the results showed a good precision, accuracy and stability, which means that it can be used for the quantification of the indicator components in Shengxuebao Mixture.


Subject(s)
Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Mass Spectrometry , Phytochemicals , Reproducibility of Results
7.
China Journal of Chinese Materia Medica ; (24): 1074-1082, 2017.
Article in Chinese | WPRIM | ID: wpr-275417

ABSTRACT

Design space approach was applied in this study to optimize the lime milk precipitation process of Lonicera Japonica (Jinyinhua) aqueous extract. The evaluation indices for this process were total organic acid purity and amounts of 6 organic acids obtained from per unit mass of medicinal materials. Four critical process parameters (CPPs) including drop speed of lime milk, pH value after adding lime milk, settling time and settling temperature were identified by using the weighted standardized partial regression coefficient method. Quantitative models between process evaluation indices and CPPs were established by a stepwise regression analysis. A design space was calculated by a Monte-Carlo simulation method, and then verified. The verification test results showed that the operation within the design space can guarantee the stability of the lime milk precipitation process. The recommended normal operation space is as follows: drop speed of lime milk of 1.00-1.25 mL•min⁻¹, pH value of 11.5-11.7, settling time of 1.0-1.2 h, and settling temperature of 10-20 ℃..

SELECTION OF CITATIONS
SEARCH DETAIL